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Abstract—Reinforcement learning algorithms enable an agent
to optimize its behavior from interacting with a specific environ-
ment. Although some very successful applications of reinforce-
ment learning algorithms have been developed, it is still an open
research question how to scale up to large dynamic environments.
In this paper we will study the use of reinforcement learning on
the popular arcade video game Ms. Pac-Man. In order to let Ms.
Pac-Man quickly learn, we designed particular smart feature
extraction algorithms that produce higher-order inputs from the
game-state. These inputs are then given to a neural network
that is trained using Q-learning. We constructed higher-order
features which are relative to the action of Ms. Pac-Man. These
relative inputs are then given to a single neural network which
sequentially propagates the action-relative inputs to obtain the
different Q-values of different actions. The experimental results
show that this approach allows the use of only 7 input units in the
neural network, while still quickly obtaining very good playing
behavior. Furthermore, the experiments show that our approach
enables Ms. Pac-Man to successfully transfer its learned policy
to a different maze on which it was not trained before.

I. INTRODUCTION

Reinforcement learning (RL) algorithms [1], [2] are attrac-
tive for learning to control an agent in different environments.
Although some very successful applications of RL exist, such
as for playing backgammon [3] and for dispatching elevators
[4], it still remains an issue how to deal effectively with
large state spaces in order to obtain very good results with
little training time. This paper describes a novel approach
which is based on using low-complexity solutions [5], [6]
in order to train Ms. Pac-Man effectively at playing the
game. The low-complexity solution is obtained by using smart
input feature extraction algorithms that transform the high-
dimensional game-state to only a hand full of features that
characterize the important elements of the environmental state.

Ms. Pac-Man was released in 1982 as an arcade video game,
and has since become one of the most popular video games
of all time. The simplicity of the game rules in combination
with the complex strategies that are required to obtain a
proper score, have made Ms. Pac-Man an interesting research
topic in Artificial Intelligence [7]. The game of Ms. Pac-
Man meets all the criteria of a reinforcement learning task
[8]. The environment is difficult to predict, because the ghost
behaviour is stochastic. The reward function can be well
defined by relating it to in-game events, such as collecting a
pill. Furthermore, there is a small action space, which consists
of the four directions in which Ms. Pac-Man can move: left,

right, up and down. However, because agents are always in
the process of moving and there are many possible places for
pills in a maze, there is a huge state space for which a large
amount of values are required to describe a single game state.
This prohibits the agent from calculating optimal solutions,
which means they must be approximated in some way. It
makes the game an interesting example of the reinforcement
learning problem. Previous research on Pac-Man and Ms. Pac-
Man often imposed a form of simplification on the game. For
example, by limiting the positions of agents to discrete squares
in the maze [9], [10]. To decrease the amount of values to
describe a state, the size of the maze has been reduced as
well [8].

The agent we constructed consists of a multi-layer percep-
tron [11] trained using reinforcement learning. This method of
machine learning has yielded promising results with regards
to artificial agents for games [12]. Recently, it has been used
for training an agent in playing a first-person shooter [13],
as well as for the real-time strategy game Starcraft [14]. The
performances of reinforcement learning and an evolutionary
approach have been compared regarding the board-game Go,
in which game strategies rely heavily on in-game positions
as well. Reinforcement learning was found to improve the
performance of the neural network faster than evolutionary
learning [15], however this may be specific to Go, and the
research question of using reinforcement learning or evolu-
tionary algorithms to optimize agents is still an open problem.
In this paper we combine neural networks with Q-learning
[16], [17] .

We pose that a higher-order representation of input values
relative to Ms. Pac-Man’s current position would better suit the
game environment than a direct representation of all details.
Where an absolute representation of pill positions would
require a binary input value for every possible position, very
useful input information about pills could also be represented
using four continuous input values that express the distance to
the closest pill for each direction around Ms. Pac-Man. The
use of few inputs to characterize the game-state in Ms. Pac-
Man has also been used in [18] and [8]. However, in [18]
elementary inputs are used and they used evolutionary neural
networks instead of value-function based RL. In [8] rule-based
policies were learned, where the rules were human designed
and the values were learned with RL, also using few features
to describe the state.



There are numerous benefits associated with this approach.
The amount of inputs required to describe the state of the game
is very low, allowing faster training. The influence of an input
value on the desirability of actions can be easily established,
making training more effective. The resulting neural network
is trained independently of maze dimensions and structure,
which allows the agent to exhibit its learned policy in any
maze. Finally our approach makes any form of restricting the
maze dimensions or positions of agents obsolete.

A common approach to reinforcement learning with func-
tion approximation uses multiple action neural networks [19],
which all use the entire state representation as input. Each net-
work is trained and slowly learns to integrate this information
into an output value representing the desirability of a specific
action. The networks must slowly converge to expressing
desirability on the same scale, or the agent will be unable to
select the best action. In this paper, we argue for the use of a
single action neural network that can receive inputs associated
with or related to a single direction (action). At each time step
the input for each direction is propagated separately, resulting
in again multiple action values. This structure imposes that
inputs will be weighted the same way for every direction and
that the desirability of actions will be expressed on one scale.

Contributions. There are a number of major contributions
to the field of RL in this paper. First of all, we show that it
is possible to use few higher-order inputs in order to capture
the most important elements of the game of Ms. Pac-Man.
Second, we show that the use of single neural networks with
action-relative inputs allows for training Ms. Pac-Man with
only 7 input neurons, while the learned behavior is still very
good. Furthermore, we show that these higher-order relative
inputs also allow for effective policy transfer to a different
maze, on which Ms. Pac-Man was not trained before.

This article will attempt to answer three research questions:
(1) Is a neural network trained using Q-learning able to
produce good playing behavior in the game of Ms. Pac-Man?
(2) How can we construct higher-order inputs to describe the
game states? (3) Does incorporating a single action neural
network offer benefits over the use of multiple action neural
networks?

Outline. Section II describes the framework we constructed
to simulate the game and train the agent. Section III discusses
the theory behind the used reinforcement learning algorithms.
Section IV outlines the various input algorithms that were
constructed to represent game states. Section V describes the
experiments that were conducted and their results. Finally, we
present our conclusions in Section VI.

II. FRAMEWORK

We developed a framework that implements a simulation
of the game (see figure 1), holding a representation of all
agents and objects, and their properties and states. A number
of input algorithms were designed that transform the in-game
situation into numeric feature input values. At every time step,
neural networks generate a decision on which action to take
by propagating the input through the neurons. When a move is

Figure 1. Screenshot of the game simulation in the first maze. The maze
structure matches that of the first maze in the original game.

carried out, a reward representing the desirability of the action
is fed back by the simulation. Reinforcement learning is then
employed to alter the weights between nodes of the neural
network, which corresponds with a change in game strategy.

In the game, Ms. Pac-Man must navigate through a number
of mazes filled with pills. As a primary objective, all of
these pills must be collected to successfully finish the level.
Unfortunately, a swarm of four ghosts has set out to make this
task as hard as possible. When Ms. Pac-Man collides with one
of these ghosts, she will lose a life. To stay in the game long
enough to collect all pills, avoiding these ghosts is another
primary objective. Four powerpills are scattered throughout
the maze. When Ms. Pac-Man collects one of these, the ghosts
will become afraid for a small period of time. In this state, the
ghosts are not dangerous to Ms. Pac-Man. In fact, a collision
between a scared ghost and Ms. Pac-Man will result in a
specific amount of bonus points. Levels contain warp tunnels,
which allow Ms. Pac-Man and the ghosts to quickly travel
from one side of the maze to the other.

Some small differences exist between our simulation and
the original game. The most notable is the moving speed of
agents. For example, in the original game the moving speed of
Ms. Pac-Man seems dependent on a number of factors, such
as whether she is eating a pill and whether she is moving
through one of the warp tunnels. In our simulation, Ms. Pac-
Man’s speed is fixed, independent of these factors. The original
game consists of four different mazes. Players have three lifes
to complete as much of these levels as they can. Our simulation
features duplicates of three of these mazes and Ms. Pac-Man



has only one life. If the level is completed successfully the
game ends in a win, as opposed to the original game where
a new level would commence. If Ms. Pac-Man collides with
a ghost the game ends in a loss, as opposed to the original
game where the player would be allowed to continue as long
as she has one or more lifes left. The ghost behavior has been
modeled after the original game as well. Unfortunately, little
documentation exists on the specifics of the original ghost
behavior. This prevented us from implementing an exact copy.
Finally, in our simulation we did not model the bonus fruits
that are sometimes spawned in the original game.

Despite these differences, our simulation still closely resem-
bles the original game. Given this fact, it is safe to assume
that an agent trained using our simulation, would be able to
perform at a comparable level when playing the original game.

III. REINFORCEMENT LEARNING

Reinforcement learning is used to train a neural network on
the task of playing the game of Ms. Pac-Man. This method
differs from standard supervised learning in that correct in-
put/output pairs are never presented, nor sub-optimal actions
explicitly corrected [2]. Reinforcement learning systems con-
sist of five main elements: a model of the environment, an
agent, a policy, a reward function, and a value function [1].
The simulation we created acts as a model, representing the
environment. It is used to simulate the behavior of objects
and agents, such as the movement of the ghosts. The neural
network forms the decision-making agent, interacting with
the environment (or model). The agent employs a policy
which defines how states are mapped to actions. The policy is
considered to be the core of a reinforcement learning system,
as it largely defines the behavior of the agent. A reward
function maps each state into a numeric value representing the
desirability of making a transition to that state. The goal of a
reinforcement learning agent is to maximize the total reward
it receives in the long run. Reward functions define what is
good for the agent in the short run. On the other hand, a value
function defines the expected return – expected cumulative
future discounted reward – for each state. For example, a state
might yield a low (immediate) reward but still have a high
value since it offers consecutive states with high rewards. It is
the goal of a reinforcement learning agent to seek states with
the highest value, not the ones with the highest reward.

In the following, a state is referred to as st and an action as
at, at a certain time t. The reward emitted at time t after action
at is represented by the value rt. An important assumption
made in reinforcement learning systems, is that all relevant
information for decision making is available in the present
state. In other words, the traveled path or history is irrelevant in
deciding the next action. This assumption is called the Markov
property [20]. A system is said to have the Markov property
if and only if specifying the probability of the next state and
reward based on the complete history (Eq. 1):

Pr{st+1 = s′, rt = r|st, at, rt−1, . . . , r0, s0, a0} (1)

Table I
LIST OF IN-GAME EVENTS AND THE CORRESPONDING REWARDS, AS USED

IN OUR EXPERIMENTS.

Event Reward Description
Win +50 Ms. Pac-Man has eaten all pills and powerpills
Lose -350 Ms. Pac-Man and a non-scared ghost have col-

lided
Ghost +20 Ms. Pac-Man and a scared ghost have collided
Pill +12 Ms. Pac-Man ate a pill
Powerpill +3 Ms. Pac-Man ate a powerpill
Step -5 Ms. Pac-Man performed a move
Reverse -6 Ms. Pac-Man reversed on her path

is equal to the probability of the next state and reward based
only on the present information (Eq. 2):

Pr{st+1 = s′, rt = r | st, at, rt−1} (2)

This assumption holds reasonably well in the game of Ms. Pac-
Man. The ghosts are the only other agents in the game, and
thereby the only source of uncertainty regarding future states.
In hallways their behavior can be predicted based on their
current moving direction – which can be part of the present
state description. At intersections the behavior of a ghost is
completely unpredictable.

The reward function in our project is fixed. Rewards are
determined based on the original Ms. Pac-Man game. That is,
static rewards are offered when a game event occurs, such as
collecting a pill or colliding with a ghost. The reward function
used in our research is listed in Table I. In the case of an
action triggering multiple rewards, these rewards are added
and then treated as if they were a single reward. The reward
for reversing on a direction was added to discourage the agent
from hanging around an empty corridor in the maze.

Exploration is required to make sure the network will not
converge to a local optimum. We define the exploration rate
as the chance that the agent would perform a random action,
rather than executing the policy it has learned thus far. If by
chance exploration is repeatedly triggered the agent will move
in a consistent direction using the same random action. This
means that the policy could always change directions in a
corridor, but that the random exploration action would focus
on one specific direction as long as Ms. Pac-Man stays in the
same corridor.

A. Learning rule

The Q-value function is learned over time by the agent and
is stored in a single action neural network or multiple action
neural networks, as will be explained later. For this project,
Q-learning [16], [17] was used as the reinforcement learning
algorithm. It specifies the way in which immediate rewards
should be used to learn the optimal value of a state. The
learning rules of SARSA [21] and QV-learning [22] were also
implemented in the framework, although they were not used
in the final experiments. The general Q-learning rule is:

Q(st, at)← Q(st, at)+α(rt+γmax
a

Q(st+1, a)−Q(st, at))



The new quality or Q-value of a state-action pair is updated
using the immediate reward plus the value of the best next
state-action pair. The constants α and γ refer to the learning
rate and discount factor, respectively. The discount factor
decides how distant rewards should be valued, when adjusting
the Q-values. The learning rate influences how strongly the
Q-values are altered after each action.

The actual altering of weights in the neural network(s)
is done by an adaptation of the backpropagation algorithm
[11]. The standard backpropagation algorithm requires a target
output for a specific input. In reinforcement learning, the target
output is calculated based on the reward, discount factor and
the Q-value of the best next state-action pair. If the last action
ended the game, Eq. 3 is used to compute the target output
value:

Qtarget(st, at)← rt (3)

Otherwise Eq. 4 is used to compute the target output:

Qtarget(st, at)← rt + γmax
a

Q(st+1, a) (4)

Then the Q-value of the state-action pair is updated by using
this target value to train the neural network.

B. Single action neural network

When using a single action network, at every time step
each action or direction is considered in turn using the same
neural network. Only the inputs relevant for that direction
are offered to the neural network and the output activation
is stored in memory. After a network run for each action
has been completed, the output values are compared and the
action associated with the highest activation is performed,
unless an exploration step occurs. The single action neural
network has the following structure:

Input layer, contains 7 input neurons.
Hidden layer, contains 50 hidden neurons.
Output layer, contains a single output neuron.

C. Multiple action neural networks

When using multiple action networks, at every time
step each action or direction is associated with its own
neural network. They will all be offered the entire state
representation, instead of just the input related to the direction
in question. The output values are compared and the action
associated with the highest activation is performed, unless an
exploration step occurs. The four action neural networks have
the following structure:

Input layer, contains 2 + 4× 5 = 22 input neurons.
Hidden layer, contains 50 hidden neurons.
Output layer, contains a single output neuron.
The number of hidden neurons was selected after some

preliminary experiments, but we have also used different
numbers of hidden neurons. When the number of hidden

neurons was smaller than 11, the results were much worse.
With 20 hidden neurons, the results were slightly worse and
with more than 50 hidden neurons, the results became slightly
better at the cost of more computation.

IV. STATE REPRESENTATION

The neural networks have no direct perception of the game
or its objectives and states. They must instead rely on the
value-free numeric data offered by input algorithms, and the
reward function. Because of this, the nature of these must
be carefully considered. The next few subsections outline the
various smart input algorithms that were implemented. The
first two algorithms produce a single feature value that is inde-
pendent of the direction (left, right, up, down). They describe
global characteristics of the current state. The remaining 5
feature extraction algorithms produce four input values: one
associated with each direction. Multiple action networks will
receive the entire state representation – a concatenation of
the values for every direction. A single action network is
only concerned with one direction at a time and will only
receive the input values associated with that specific direction
or a global characteristic. Because of the use of higher-order
relative inputs, the agent requires a total of 2 + 4 ∗ 5 = 22
inputs to decide on an action in every game-state, independent
of the maze, which also allows for policy transfer [23] as we
show later when using single action networks.

A. Level progress

As previously stated, there are two primary goals that Ms.
Pac-Man should be concerned with. All of the pills need to be
collected to complete the level. At the same time, ghosts must
be avoided so Ms. Pac-Man will stay in the game long enough
to collect all of the pills. The artificial agent needs to find the
right balance between these two tasks. Game situations that
offer a certain degree of danger need to be avoided. However,
engaging into a dangerous situation can be worthwhile if it
allows Ms. Pac-Man to collect all remaining pills in the maze.

To allow the neural network to incorporate these objectives
into its decisions, we constructed an input algorithm that
represents the current progress in completing the level. Given:

a = Total amount of pills
b = Amount of pills remaining

The first input PillsEatenInput is computed as:
PillsEatenInput = (a− b)/a

B. Powerpill

When Ms. Pac-Man eats a powerpill, a sudden shift in
behavior needs to occur. Instead of avoiding the ghosts, the
agent can now actively pursue them. Whether it is worthwhile
to pursue a scared ghost is influenced by how long the
powerpill will remain active. This makes up the second
input algorithm, which simply returns the percentage of the
powerpill duration that is left. If there is no powerpill recently



consumed, this value is set to 0. Given:

a = Total duration of a powerpill
b = Time since powerpill was consumed

The second input PowerPillInput is computed as:
PowerPillInput = (a− b)/a

C. Pills

To allow the neural network to lead Ms. Pac-Man towards
pills, it needs some sense of where these pills are. In
every state there are 4 possible moving directions, namely:
left, right, up and down. The input algorithm that offers
information about the position of pills makes use of this
fact, by finding the shortest path to the closest pill for each
direction. The algorithm will use breadth-first search (BFS)
to find these paths [24]. If this does not yield immediate
results, it will switch over to the A*-algorithm to find
the shortest path to the pills [25]. The result, in the form
of four values, is then normalized to always be below 1. Given:

a = Maximum path length1

b(c) = Shortest distance to a pill for a certain direction, c

The third input PillInput(c) for direction c is computed
as:

PillInput(c) = (a− b(c))/a

PillInput is the first algorithm that relates its output to
the various directions. This means that it adds one input to
the single action network or four inputs to the multiple action
networks.

D. Ghosts

Naturally, a game situation becomes more threatening as
non-scared ghosts approach Ms. Pac-Man. This should be
reflected by an increase in some input, signalling that it is
dangerous to move in certain directions. Figure 2 shows an
example of a game situation where Ms. Pac-Man is fleeing
from two ghosts. From Ms. Pac-Man’s perspective, does the
presence of the ghost to the far left influence the degree of
danger she is in? At this point in time there is no way for
that ghost to collide with Ms. Pac-Man, as the other ghost
will collide and end the game first. Figure 3 illustrates a
game situation where a ghost has just reached an intersection
directly next to Ms. Pac-Man. From that moment on, moving
in the corresponding direction would be futile, as the ghost
has closed of the hallway. We mark this point as the most
dangerous possible.

1For example, in the first maze a path between two positions can never
be longer than 42 steps, when the shortest route is taken. This is because the
warp tunnels offer a quick way of traveling from one outer edge of the maze
to another.

Figure 2. Example of a game situation where two ghosts are approaching
Ms. Pac-Man from one side. As the closest ghost will reach Ms. Pac-Man
first, only the distance to that ghost matters for the amount of danger that
should be associated with the direction ’left’.

Figure 3. Example of a game situation where a ghost has just closed off
any route belonging to the direction ’right’. If the ghost would be more to
the right, the amount of danger would have been less. However, if the ghost
would be even more to the left, the same danger holds for the direction ’right’.

The next input algorithm offers information on the danger
associated with each action. First, it finds the shortest path
between each non-scared ghost and each intersection that
is directly next to Ms. Pac-Man. Then for each action,
it selects the shortest distance between the corresponding
intersection and the nearest non-scared ghost. Based on
these distances, the resulting danger values are calculated.
These are based on the expected time before Ms. Pac-
Man will collide with a ghost when travelling towards
that ghost, assuming the worst case scenario where the
ghost will keep approaching Ms. Pac-Man. These values
are then normalized to always be below 1 and above 0. Given:

a = Maximum path length1

v = Ghost speed constant2 = 0.8

b(c) = Distance between the nearest non-scared ghost
and the nearest intersection for a certain direction, c
d(c) = Distance to the nearest intersection in a certain
direction, c

The fourth input GhostInput(c) is computed as:
GhostInput(c) = (a+ d(c)× v − b(c))/a

E. Scared ghosts

When Ms. Pac-Man collects a powerpill, all of the ghosts
become afraid for a short period of time. If a scared ghost
collides with Ms. Pac-Man, it will shortly disappear and then
respawn in the center of the maze, as a non-scared ghost.
This means that the game can contain both ghosts that need
to be avoided and ghosts that can be pursued, at the same
time. As a result we need separate input values for scared
and non-scared ghosts. This will allow the neural network to
differentiate between the two.

The input algorithm that considers the scared ghosts is
very straight-forward. For each action, it returns the shortest

2The ghost speed is defined relatively to Ms. Pac-Man’s speed.



Figure 4. Example of a game situation where the only way for Ms. Pac-Man
to escape involves approaching a ghost.

distance between Ms. Pac-Man and the nearest scared ghost.
These values are then normalized to always be below 1. Given:

a = Maximum path length1

b(c) = Shortest distance to a scared ghost for a certain
direction, c

The fifth input GhostAfraidInput(c) is computed as:
GhostAfraidInput(c) = (a− b(c))/a

F. Entrapment

Figure 4 illustrates a situation where Ms. Pac-Man needs
to approach a ghost in order to escape it. She should be able
to avert the present danger by reaching the next intersection
before any of the ghosts will. It shows how at times, one
should accept a temporary increase in danger knowing it will
lead to a heavy decrease in danger later on.

In addition to the general sense of danger that the GhostIn-
put provides, the neural network needs information on which
paths are safe for Ms. Pac-Man to take. We define these as
safe routes: a path that can safely lead Ms. Pac-Man three
intersections away from her current position. This means that
Ms. Pac-Man should be able to reach every one of those
possible intersections sooner than any ghost. In case there are
no safe paths 3 intersections away in any direction, the number
of safe paths is computed for 2 intersections away, etc.

First, the algorithm establishes a list of all intersections.
For each intersection, it compares the time that Ms. Pac-Man
needs to reach the intersection with the times that each of
the ghosts need to reach the intersection. A list is created,
holding all intersections that Ms. Pac-Man can reach sooner
than any ghost. BFS is then used to find all safe routes.
The algorithm returns for each action, the percentage of safe
routes that do not start with the corresponding direction – the
values will increase with danger. Given:

a = Total amount of safe routes
b(c) = Amount of safe routes in a certain direction, c

The sixth input EntrapmentInput(c) is computed as:
EntrapmentInput(c) = (a− b(c))/a

G. Action

Figure 5 shows Ms. Pac-Man being approached by two
ghosts in a symmetrical maze. What is the best direction to

Figure 5. Example of a game situation where all possible actions are equally
desirable.

move in, when they all offer the same promise of danger and
treasure? In this case one might argue the direction doesn’t
matter as long as the agent sticks with it. If subtle differences
in input values were to cause Ms. Pac-Man to reverse on her
path, she is bound to be closed in by both ghosts. The seventh
and final input algorithm returns for each direction a binary
value, which signals if Ms. Pac-Man is currently moving in
that direction.

V. EXPERIMENTS AND RESULTS

To be able to compare the use of a single action network
with using multiple action networks, we performed several
experiments. In the first experiment six trials were conducted
in which the agent was trained on 2 mazes for which we
compare a single action network to multiple action networks.
In the second experiment we transfered the learned policies to
a different maze to see how well the learned policies can be
transfered to a novel maze, unseen during training.

A. Experiment 1: Training on 2 mazes

In the first experiment, the rate of exploration was slowly
brought down from 1.0 to 0.0 during the first 4500 games.
The learning rate was set to 0.0005 during training (and 0.0
during testing). The discount factor was set to 0.95. Although
the input algorithms and simulation support continuous data
regarding agent positions, the network still has to run in
discrete time steps. Therefore, we decided to let Ms. Pac-Man
move half a square in every step. As in the original game, the
speed of ghosts is defined relative to Ms. Pac-Man’s speed,
thus ghosts travel 0.4 squares every step.

As previously mentioned, three mazes from the original
game were implemented in the simulation. In the first experi-
ment the first two mazes were used. Afterwards performance
was tested without learning on the mazes used during training.
Pilot experiments showed the agent’s performance stabilized
after 7.000 games. We therefore decided to let the training
phase last 10.000 games during the experiments, followed by
a test phase of 5.000 games.

The performance is defined by the average percentage of
level completion – the percentage of pills that were collected
in a maze before colliding with a non-scared ghost. If all pills
were collected (100% level completetion), we call it a suc-
cessful game or a ”win”. The level completetion performance
during training is plotted in figures 6 and 7. They show a
steady increase over time for both the single and the multiple
action neural networks. It appears the networks converge to a
certain policy, as the performance stabilizes around 88% after
approximately 8.000 games.



Figure 6. This graph shows how the performance (percentage of level
completion) develops while training on the first two mazes during the first
10.000 games, with the use of a single network. Results were averaged over
six independent trials.

Figure 7. This graph shows how the performance develops while training on
the first two mazes during the first 10.000 games, with the use of four action
networks. Results were averaged over six independent trials.

Table II lists the results during the test trials. The table
shows the average percentages of level completions as well
as the winning percentages. It also shows the standard errors,
based on 5000 games for the single runs, and based on the
6 runs for the final averages. We can easily observe that the
single action network and multiple actions networks appear to
perform equally well when tested on the first two mazes.

Table II
AVERAGE PERCENTAGE OF LEVEL COMPLETION (AND STANDARD ERROR)
ALONG WITH PERCENTAGE OF SUCCESSFUL GAMES (OUT OF 5.000 TOTAL
GAMES) DURING TESTING ON THE FIRST TWO MAZES. THE BOTTOM ROW

CONTAINS RESULTS AVERAGED OVER THE VARIOUS TRIALS.

Single network Action networks
Trial Level completion Wins Level completion Wins

1
2
3
4
5
6

90.1% (SE 0.2) 46.3% 93.8% (SE 0.2) 65.5%
89.2% (SE 0.2) 55.2% 88.7% (SE 0.2) 53.5%
86.9% (SE 0.3) 53.5% 86.7% (SE 0.2) 46.3%
85.7% (SE 0.3) 50.1% 84.8% (SE 0.2) 40.2%
85.6% (SE 0.3) 49.9% 81.7% (SE 0.3) 52.2%
82.1% (SE 0.4) 47.8% 77.5% (SE 0.4) 43.8%

Avg. 86.6% (SE 1.2) 50.5% 85.6% (SE 2.3) 50.3%

B. Experiment 2: Policy transfer to a different maze

Table III lists the results during the test trials on a different
maze. In this case, the single action network outperforms
multiple action networks when tested on the unknown maze.
It shows that in 5 of the 6 runs the performance of the single
action networks is better than the performance of the multiple
action networks.

Table III
AVERAGE PERCENTAGE OF LEVEL COMPLETION (AND STANDARD ERROR)
ALONG WITH PERCENTAGE OF SUCCESSFUL GAMES (OUT OF 5.000 TOTAL

GAMES) DURING TESTING ON THE THIRD MAZE. THE BOTTOM ROW
CONTAINS RESULTS AVERAGED OVER THE VARIOUS TRIALS.

Single network Action networks
Trial Level completion Wins Level completion Wins

1
2
3
4
5
6

90.5% (SE 0.2) 46.1% 84.9% (SE 0.3) 50.0%
89.1% (SE 0.2) 49.0% 80.8% (SE 0.3) 34.7%
88.8% (SE 0.2) 47.6% 79.8% (SE 0.4) 42.3%
86.3% (SE 0.3) 54.6% 70.5% (SE 0.4) 31.3%
83.0% (SE 0.3) 47.2% 68.4% (SE 0.5) 29.1%
82.3% (SE 0.3) 47.3% 61.8% (SE 0.5) 28.0%

Avg. 86.7% (SE 1.4) 48.6% 74.4% (SE 3.6) 35.9%

Unpaired t-tests were performed to compare the data col-
lected during the test phases. For testing on the first two mazes,
the difference in performance between single and multiple
action networks was not significant (p=0.695). For testing on
the third maze, a significant difference in performance was
found between single and multiple action networks (p=0.017).

VI. DISCUSSION

It is important to note that only 7 values were required to
describe each direction. Among these inputs is the duration of
the powerpill and the distance to scared ghosts, which only
have a value above zero for small parts of the game. This
means that most of the time, Ms. Pac-Man navigates using
only 5 inputs. We performed additional experiments in which
we left each time one of the inputs out. These experiments
showed that the performance without the Action input was the
worst. The performance without the PillsEaten, PowerPill and
GhostAfraid inputs, were quite similar to when they were used.
Finally, the results without the Pill, Ghost, and Entrapment
inputs dropped with around 8-10% compared to using them.

The higher-order relative input implicitly incorporated the
structure of the maze into its values through the path finding
algorithms. In comparison, an absolute representation would
need to include the position of each pill, non-scared ghost,
and scared ghost. This would amount to thousands of binary
input values for a regular sized maze.

The level of performance that was reached with the small
amount of input shows that a neural network that was trained
using reinforcement learning is able to produce highly compe-
tent playing behavior. This is confirmed by the data gathered
during the test phases of the experiments. Single action net-
works showed to extend to unknown mazes very well, which
is an important characteristic of competent playing behavior.

Table III shows how a single action network outperforms
multiple action networks in an unknown maze. The use of
a single action network imposes certain restrictions on the
decision-making process. It was mentioned earlier that inputs
will be weighted the same way for every direction and that
the desirability of actions will be expressed on one scale. It
also ensures that when considering a certain direction, only
input relevant to that direction will be used. The data suggests
that without these restrictions the policy of the networks will
not generalize as well to unseen mazes. We conclude that



incorporating a single network offers benefits over the use of
action networks.

When we visualize some of the levels that Ms. Pac-Man
played, it is clear that an even higher performance could be
achievable if the input algorithms were to be extended. Ms.
Pac-Man seems to have learned how to avoid ghosts, but does
not know what to do if both ghosts and pills are at the other
end of the maze. It is a consequence of how the PillInput was
set up: when there is a large distance between Ms. Pac-Man
and the nearest pills, the associated input values will be very
low. If the distance to the pills approaches the maximum path
size, the influence of the presence of pills on the output values
of the neural networks will approach zero. The Entrapment
and Ghost inputs signal a maximum amount of danger when
Ms. Pac-Man is fully closed in by ghosts. When all directions
are equally unsafe the next move will be decided based on the
other input values, such as the distance to the nearest pills.
It would be more prudent for Ms. Pac-Man to keep equal
distance between her and the ghosts surrounding her. The
framework currently lacks an input algorithm that considers
distances to all ghosts in the maze.

The results of this paper lead the way to a new approach to
reinforcement learning. Reinforcement learning systems are
often trained and tested on the same environment, but the
evidence in this paper shows that not all networks are capable
of forming a generalized policy. Using higher-order relative
inputs and a single action network, a reinforcement learning
system can be constructed that is able to perform well using
very little input and is highly versatile. The learned policy
generalizes to other game environments and is independent
of maze dimensions and characteristics. Future research could
apply the ideas presented in this paper on different reinforce-
ment learning problems, specifically those with a small action
space and a large state space – such as first-person shooters
and racing games.
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